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ABSTRACT: A kind of novel polyether polyurethane
(PU)/clay nanocomposite was synthesized using poly(tetra-
methylene glycol), 4,4'-diphenylmethane diisocyanate
(MDI), 1,6-hexamethylenediamine, and modified Na*-
montmorillonite (MMT). Here, organicly modified MMT (O-
MMT) was formed by applying 1,6-hexamethylenediamine
as a swelling agent to treat the Na"-MMT. The X-ray anal-
ysis showed that exfoliation occurred for the higher O-MMT
content (40 wt %) in the polymer matrix. The mechanical
analysis indicated that, when the O-MMT was used as a
chain extender to replace a part of the 1,2-diaminopropane

to form PU/clay nanocomposites, the strength and strain at
break of the polymer was enhanced when increasing the
content of O-MMT in the matrix. When the O-MMT content
reached about 5%, the tensile strength and elongation at
break were over 2 times that of the pure PU. The thermal
stability and the glass transition of the O-MMT/PU nano-
composites also increased with increasing O-MMT content.
© 2005 Wiley Periodicals, Inc. ] Appl Polym Sci 99: 6-13, 2006
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INTRODUCTION

A nanocomposite is a kind of composite material hav-
ing more than one solid phase with a dimension in the
1-20 nm range.""* Recently, polymer/clay nanocom-
posites have attracted a great deal of attention. For
example, polymer nanocomposites such as poly-
amide,”” polyepoxy,® polystyrene,'”!" poly(ethylene
oxide),'*"® polycaprolactone,'* polyimide,">™"® and
polyurethane (PU),°~*® with montmorillonite (MMT)
or layered silicates have been developed. Because of
the much stronger interfacial forces between the nano-
meter-sized domains, they exhibit many physical
properties that are better, such as thermal, mechanical,
and barrier properties, than those of conventional
composites.

PU/clay nanocomposites were first reported by var-
ious groups.”®” They focused on the compatibility
between organic clay and polyols and found that the
MMT clay exchanged with long-chain onium ions
(carbon number = 12) had good compatibility. It was
also found that the clay nanolayers were uniformly
dispersed in the polymer matrix, nanolayer exfoliation
had been achieved; and the mechanical properties and
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thermal stability of the PU/clay nanocomposites were
increased.

The aim of this work was to design a new polyether
PU nanocomposite based on organicly modified MMT
(O-MMT) employed as chain extenders in the syn-
thetic process. In our procedure, 1,6-hexamethyl-
enediamine (carbon number < 12; double —NH,
groups) was used as a swelling agent to treat Na™-
MMT and it was intercalated into clay nanolayers to
form the O-MMT. Then, the O-MMT was used as a
part of the chain extenders, replacing a part of the
1,2-diaminopropane to form PU/clay nanocompos-
ites. Our research interest focused on the effect of the
O-MMT content on the mechanical properties of the
nanocomposites. The tensile stress, elongation at
break, thermal stability, glass transition, and water
absorption of the O-MMT/PU nanocomposites were
investigated.

EXPERIMENTAL
Materials

MMT (Aldrich) with a cationic exchange capacity of
78.6 meq/100 g and 1,6-hexamethylenediamine (Tian-
jing Chemical Reagent Co.) were used as received.
4,4'-Diphenylmethane diisocyanate (MDI, Aldrich)
and poly(tetramethylene glycol) (PTMEG, Mn = 2000,
Aldrich) were dehydrated under a vacuum at 60°C for
24 h. Dimethylformamide (DMF; 99%, Tianjing Chem-



NOVEL PU/CLAY NANOCOMPOSITES

ical Reagent Co.) and 1,2-diaminopropane (Shanghai
Chemical Reagent Co.) were dried over calcium hy-
dride for 2 days and then distilled under a vacuum.

Preparation of organophilic clay (O-MMT)

The MMT was first screened with a 300-mesh sieve to
remove impurities. Then, 20 g of the screened MMT
was gradually added to a previously prepared solu-
tion of 10.6 g of Na,CO; dissolved in 200 mL of H,O
at 70°C, and the resultant suspension was vigorously
stirred for 24 h. The treated MMT was then filtered
and washed with deionized water until complete re-
moval of CO3™ ions, which was insured by titrating
with 0.1N CaCl,. The filter cake was then dried at 70°C
for 24 h in a vacuum ground, and screened with a
300-mesh sieve to obtain the Na-MMT.* Ten grams of
the screened Na-MMT was gradually added to a pre-
viously prepared solution of 1,6-hexamethylenedia-
mine (12.5 g) dissolved in 1000 mL of 0.01N HCI at
70°C. The resulting suspension was vigorously stirred
for 6 h. Then, this white precipitate was isolated by
filtration, suspended in 400 mL of hot water, and
stirred for 2 h. To insure complete removal of chloride
ions, the precipitate was washed repeatedly until no
further formation of AgCl was detected after the ad-
dition of 0.1IN AgNO; to the washing water. The prod-
uct was finally filtered and dried in vacuuo at 80°C for
24 h, ground, and screened with a 300-mesh sieve to
obtain the organoclay.”

Synthesis of PU/clay nanocomposites
Preparation of pure PU

Five grams of MDI and 19.5 g of PTMEG at a molar
ratio of 2 : 1 were dissolved in DMF solvent, and then
the whole solution was mixed under a nitrogen atmo-
sphere for 2 h at 90°C to form a prepolymer. Then,
0.74 g of 1,2-diaminopropane was gradually added to
the prepolymer with vigorous stirring at room tem-
perature for 4 h to complete the reaction (Scheme 1).
The PU films were formed by casting the solution onto
glass plates and then removing the solvent in a vac-
uum at 70°C for 36 h.*°

Preparation of PU/clay nanocomposites

The procedure of synthesizing the PU prepolymer was
as in the previous section, but different amounts of
O-MMT (1,2, and 3 wt %, etc.) were mixed with 20 mL
of DMF and then added to the prepolymer with vig-
orous stirring at room temperature for 2 h. Subse-
quently, 0.74 g of 1,2-diaminopropane was gradually
added to the mixture with vigorous stirring for 4 h to
complete the reaction (Scheme 2). The PU/clay films
were obtained in the same way as the PU films.*

Polymer recovery from PU/clay nanocomposites

Toluene (10 mL) was added to 1 g of the synthesized
PU/clay while stirring for 2 h at room temperature.
Then, 20 mL of a 1% LiCl solution in DMF was grad-
ually added to the suspension. The mixture was
stirred for 48 h to perform the reverse ion-exchange
reaction, and then the solution was centrifuged at
10,000 rpm for 2 min. The supernatant liquid after
centrifugation was poured into methanol and the re-
sulting solid was filtered and dried in vacuuo.**°

Characterization

X-ray diffraction (XRD) measurements were per-
formed with a D/Max-2400 Rigaku diffractometer
with Ni-filtered Cu K, radiation (A = 1.5418 A). The
scanning rate was 2°C/min over a range of 20 = 2-15°.
The molecular weights of the polymer were deter-
mined with a Waters 2695-2410 gel permeation chro-
matography (GPC) system with DMF as the solvent.
The calibration curves for GPC were obtained by us-
ing polystyrene standards.

Differential scanning calorimetry (DSC) was per-
formed with a DSC822E under a N, atmosphere with
a heating rate of 10°C/min. Thermogravimetric anal-
ysis (TGA) was carried out on a Perkin-Elmer 7 Series
thermal analysis system at a scanning rate of 10°C/
min in a nitrogen atmosphere. The tensile properties
of the sample were tested with an Instron mechanical
tester (model DY-35) at a crosshead speed of 500 mm/
min. The I-shaped specimens were prepared with a
4-mm width, 16-mm length, and 0.2-mm thickness.
For each datum point, five samples were tested and
the average value was taken.

The water absorption measurements of pure PU and
PU/clay nanocomposites were carried out according
to the specifications of ASTM D 570, and the test
specimens were cut in the shape of 76.2 X 254 X 1
mm. The specimens were dried in a vacuum at 80°C
for 24 h, cooled in a desiccator, and then immediately
weighed with 0.001-g precision to get the initial
weight (W,). Subsequently, the conditioned specimens
were entirely immersed in a container of deionized
water maintained at 25 * 0.2°C for 24 h, taken out of
the water, and the surface water removed with a dry
cloth. Then, the specimens were weighed immediately
to ascertain the final weight (W;). The percentage of
increased weight of the samples was calculated with
0.01% precision by using the formula (W; — W)/ W,.**

RESULTS AND DISCUSSION
Polymer synthesis

In Schemes 1 and 2 the synthetic process and one
simplified chemical structure of PU and O-MMT/PU
are reported. As shown in Scheme 1, in the first step
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Scheme 1 The reaction pattern that was followed to obtain the PU segments.

PTMEG reacted with MDI at a 0.5 molar ratio of
PTMEG/MDI to form isocyanate-terminated pre-PU.
In the second step a stoichiometric amount of 1,2-
diaminopropane was used as a chain extender to pro-
duce PU. Correspondingly, as reported in Scheme 2,
O-MMT was used as a chain extender to produce
O-MMT/PU nanocomposites in the second step. Fi-
nally, in the third step of the reaction 1,2-diaminopro-
pane was added; lead to the formation of the
O-MMT/PU nanocomposites with the O-MMT con-
tent varying regularly from 0 to 50 wt %.

Structural characterization

The XRD patterns of the MMT and the O-MMT are
shown in Figure 1. The first diffraction peaks at 26
= 7.04 and 6.30°, corresponding to a spacing of MMT
and O-MMT platelets of 1.255 and 1.403 nm, respec-

tively, indicated that the silicate layer galleries in the
MMT were intercalated by 1,2-diaminopropane. The
second diffraction peaks were at 260 = 8.38° and the
peak of MMT was weaker than that of O-MMT, indi-
cating that the silicate layer galleries in the MMT were
also intercalated at 26 = 8.38°. The X-ray patterns of
PU, PU5, PU10, PU20, PU30, and PU40 are shown in
Figure 2. It is obvious that in the XRD patterns of
PU/clay nanocomposites the peaks at 26 = 6.30 and
8.38° were all totally absent. Such results suggested
the exfoliation of the clay platelets in the polymeric
matrix.**

Therefore, it can be concluded that the reaction
scheme adopted gave rise to nanocomposites in which
the silicate layers was intercalated (or exfoliated).
When the clay weight fraction reached high content
(O-MMT = 40.0 wt %), the MMT platelets were dis-
persed in the polymer matrix.
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Scheme 2 The reaction pattern that was followed to obtain the PU/clay segments.

The number-average molecular weight (M,) and  composites at different chain extender ratios are given
polydispersity (D) of PU, O-MMT/PU nanocompos-  in Figure 3. It was found that the M, and D values
ites, and recovered PU from organoclay/PU nano-  were strongly affected by the addition of O-MMT.
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Figure 1 XRD patterns of (a) montmoriilonite and (b) or-
ganomodified montmorillonite.

Compared to the pure PU, the M,, and D of 1%, 5%,
and 8% O-MMT/PU showed only a slight change at
different chain extender ratios. In addition, the M,
values of those nanocompsites were higher than that
of pure PU. Such results suggested that the mechani-
cal properties of 1%, 5%, and 8% O-MMT/PU nano-
composites were better than that of pure PU. The
thermal properties of those nanocompsites were
higher than that of pure PU®! and are presented and
discussed in the following.

Physical properties
DSC study

The thermal properties of pure PU and O-MMT/PU
nanocomposites were studied by DSC, and these re-
sults are shown in Table I. The glass-transition tem-
peratures of the O-MMT/PU nanocomposites were
between —58 and —61°C, being nearly identical to that
of pure PU at —61.5°C (Table I). The effect of O-MMT
dispersed on the free volume of PU was insignificant
in influencing the glass-transition temperature of pure
PU. The pure PU exhibited two broad endothermic
transitions at higher temperature (endo 1 and endo 2)
and a tiny exothermic transition high (100°C). The
O-MMT/PU nanocomposites had only one broad en-
dothermic transition (endo 1) at higher temperature
than the pure PU (endo 1). This trend might be ex-
plained by the idea that there were two phases in the
polymer matrix. Endo 1 in the pure PU identified with
the disruption of soft segment/hard segment bonds or
disruption of short-range order within the hard seg-
ment microdomains. In addition, endo 2 was related
to the breakup of interurethane hydrogen bonds.*?
When O-MMT was used as a chain extender to replace
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a part of the 1,2-diaminopropane, the MMT was dis-
persed in the polymer matrix. The chain motions of
the polymer molecules in these silicate layers were
barred and limited. The crystallizability of O-MMT/PU
nanocomposites was reduced and endo 2 disappeared
in the O-MMT/PU nanocomposites.> These results
can be interpreted by the intercalative behavior of the
polymer as shown in Figure 2.

TGA study

The TGA of pure PU and O-MMT/PU nanocompos-
ites is shown in Figure 4. In the temperature range
from 250 to 650°C, the O-MMT/PU nanocomposites
displayed higher thermal resistance than that of pure
PU (Fig. 4). The explaination for this could be that the
chain motions of the polymer molecules in these sili-
cate layers were barred and limited, and the thermal
properties of the O-MMT/PU nanocomposites in-
creased. The more polymer molecule chains that were
attached in the intercalation, the higher the thermal
capability was.**

Stress—strain behavior

The experimental results of the effect of the O-MMT
content on the tensile mechanical properties of the
nanocomposites are shown in Figure 5. It was found
that the O-MMT content had a remarkable effect on
the mechanical properties of the nanocomposites. As
shown in Figure 5, both the tensile strength and the
elongation at break of the O-MMT/PU increased with
the increasing of O-MMT content in the range of 1-5
wt %. When the O-MMT content was in the range of

Intensity (a.u.)

20 (%)

Figure 2 XRD patterns of PU and O-MMT/PU nancom-
posites: (a) PU, (b) 5% O-MMT/PU, (c) 10% O-MMT/PU, (d)
20% O-MMT/PU, (e) 30% O-MMT/PU, (f) 40% O-MMT/
PU, and (g) 50% O-MMT/PU.
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Figure 3 (a) The number-average molecular weight (M,,) and (b) polydispersity of PU and O-MMT/PU at different chain

extender ratios.

1-8%, the tensile strength and the elongation at break
were higher than that of pure PU. Compared to the
pure PU, the tensile strength and the elongation at
break of the 5 wt % O-MMT content were increased by
more than 157 and 145%, respectively. When the O-
MMT content was higher than 5 wt %, both the tensile
strength and the elongation at break of the
O-MMT/PU decreased.

All of these results could be explained by the M,, of
the pure PU and the nanometer O-MMT layers. When

the O-MMT content was in the range of 1-8%, the M,,
of the O-MMT/PU nanocomposites was higher than
that of pure PU and the nanocomposites possessed
better mechanical properties. When the O-MMT con-
tent attained the range of 8-40 wt %, the M,, of the
O-MMT/PU nanocomposites was lower and the D of
O-MMT/PU nanocomposites was higher than that of
pure PU and the tensile strength and the elongation at
break of the O-MMT/PU decreased.”> When the O-
MMT content was higher than 40 wt %, the O-MMT
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TABLE 1
Endothermic Transitions and Water Absorption of Pure
PU and O-MMT/PU Nanocomposites

O-MMT Water
content T,° Endo 1 peak Endo 2 peak absorption
(wt %) (°C) T (°C) T (°C) (%)
0 (pure PU) —61.5 2.61 4218 492
1 —61.0 9.77 — 3.37
5 —58.0 10.40 — 3.38
10 —60.0 13.59 — 3.76
20 —60.0 12.08 — 212
30 —61.0 9.46 — 2.04
40 —60.0 8.92 — 2.83
50 —60.5 9.77 — 3.15

? Glass-transition temperatures.

began to aggregate (as suggested by the XRD in Fig.
2), leading to a further reduction of the tensile strength
and the elongation at break of the nanocomposites.

Water absorption properties

The water absorption results of PU and the
O-MMT/PU nanocomposites are given in Table I
They show that the water absorption of O-MMT/PU
nanocomposites were all slight lower than that of pure
PU. This phenomenon could be explained by the fact
that the process of water absorption on O-MMT/PU
was controlled by two competing factors. The first one
is the MMT itself is water rich (about 8-10% water
content); hence, the water absorption ratio of the O-
MMT/PU nanocomposites will increase. The second
factor is that, compared to pure PU, the O-MMT dis-
persed in the PU matrix at nanometer scale can in-
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Figure 5 The effect of the O-MMT content on the tensile
mechanical properties of O-MMT/PU nanocomposites.
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crease the mean free path of water molecules to pass
through the network of O-MMT/PU,** and result in
the decrease of the water adsorption of the compos-
ites. Because of the lower water absorption for all
O-MMT/PU nanocomposites than that of pure PU, it
seems that the second factor would play the dominant
role in the water adsorption of O-MMT/PU nanocom-
posites.

CONCLUSION

Novel polyether PU/clay nanocomposites were syn-
thesized successfully with organicly modified MMT as
chain extenders, and it was observed that the O-MMT
was completely exfoliated in the PU matrix even at
very high content (40 wt %). The structures of PU were
affected by the presence of the silicate layers in these
nanocomposites, as evidenced by their molecular
weight and glass transition. The mechanical properties
of these O-MMT/PU nanocomposites were strongly
influenced by the content of O-MMT, and the tensile
strength and the elongation achieved maximums
when the O-MMT content was 5%. In addition, the
water absorption of O-MMT/PU nanocomposites in
the range of the 1-40 wt % O-MMT content were all
slightly lower than that of pure PU. The thermal prop-
erties of O-MMT/PU nanocomposites were also
higher than the pure PU.
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